TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Agħmel sommarji illimitati bl-AI!
Aġġorna għal PRO US$ 7.0/m
Ebda funzjonijiet ristretti

None

In this paper, the authors propose a facial expression recognition system that utilizes RST (Rostrum, Supperior, and Thin) invariant features and texture features to classify six different facial expressions. The system was trained on a dataset of three individuals with a total of 90 border mask samples for training and 30% of the border mask samples for testing. The authors used k-Nearest Neighbor (k-NN) algorithm to classify the expressions and achieved an accuracy of 90% at k=2. The results showed that the Surprise expression had the highest accuracy among all the other expressions. To evaluate the performance of the system, confusion tables were conducted which showed different classification results for each facial expression. The authors concluded that RST invariant features and texture features are effective in recognizing facial expressions and can be used in various applications such as human-computer interaction, emotion recognition, and virtual communication. The paper references 15 sources, providing a comprehensive overview of the state-of-the-art techniques in facial expression recognition and their applications. Overall, the paper provides a practical approach to facial expression recognition using RST invariant features and texture features that can be used in various applications with accurate classification results.
L-utenti PRO jiksbu sommarji ta' Kwalità Ogħla
Aġġorna għal PRO US$ 7.0/m
Ebda funzjonijiet ristretti
None
Agħmel sommarji illimitati bl-AI!
Aġġorna għal PRO US$ 7.0/m
Ebda funzjonijiet ristretti

None

In this paper, the authors propose a facial expression recognition system that utilizes RST (Rostrum, Supperior, and Thin) invariant features and texture features to classify six different facial expressions. The system was trained on a dataset of three individuals with a total of 90 border mask samples for training and 30% of the border mask samples for testing. The authors used k-Nearest Neighbor (k-NN) algorithm to classify the expressions and achieved an accuracy of 90% at k=2. The results showed that the Surprise expression had the highest accuracy among all the other expressions. To evaluate the performance of the system, confusion tables were conducted which showed different classification results for each facial expression. The authors concluded that RST invariant features and texture features are effective in recognizing facial expressions and can be used in various applications such as human-computer interaction, emotion recognition, and virtual communication. The paper references 15 sources, providing a comprehensive overview of the state-of-the-art techniques in facial expression recognition and their applications. Overall, the paper provides a practical approach to facial expression recognition using RST invariant features and texture features that can be used in various applications with accurate classification results.
L-utenti PRO jiksbu sommarji ta' Kwalità Ogħla
Aġġorna għal PRO US$ 7.0/m
Ebda funzjonijiet ristretti
None
Agħti fil-qosor it-test Agħti fil-qosor it-test mill-fajl Agħti fil-qosor it-test mill-websajt

Ikseb outputs ta 'kwalità aħjar b'aktar karatteristiċi

Issir PRO


Sommarji relatati