TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
AI ಜೊತೆಗೆ ಅನಿಯಮಿತ ಸಾರಾಂಶಗಳನ್ನು ಮಾಡಿ!
ಪ್ರೊಗೆ ಅಪ್ಗ್ರೇಡ್ ಮಾಡಿ US$ 7.0/m
ಯಾವುದೇ ನಿರ್ಬಂಧಿತ ಕಾರ್ಯಗಳಿಲ್ಲ

None

In this paper, the authors introduce Fashion-MNIST, a new dataset designed to provide a more challenging test for machine learning algorithms than the traditional MNIST dataset. The Fashion-MNIST dataset consists of 70,000 images of various categories such as shirts, dresses, coats, hats, scarves, bags, and shoes. Each class has a different texture, color, and style, making it more diverse than MNIST. The authors also introduce several techniques to improve the performance of machine learning models on Fashion-MNIST, including multi-column deep neural networks, emnist (an extension of MNIST to handwritten letters), imagenet (a large-scale hierarchical image database), and regularization techniques using dropconnect. The authors evaluate several machine learning algorithms on Fashion-MNIST, showing that CNNs perform significantly better than SVMs, and that the use of dropconnect regularization improves the performance of both types of models. Overall, this paper provides a valuable resource for researchers working on image classification tasks and demonstrates the potential of using Fashion-MNIST as a more challenging and diverse alternative to MNIST.
PRO ಬಳಕೆದಾರರು ಹೆಚ್ಚಿನ ಗುಣಮಟ್ಟದ ಸಾರಾಂಶಗಳನ್ನು ಪಡೆಯುತ್ತಾರೆ
ಪ್ರೊಗೆ ಅಪ್ಗ್ರೇಡ್ ಮಾಡಿ US$ 7.0/m
ಯಾವುದೇ ನಿರ್ಬಂಧಿತ ಕಾರ್ಯಗಳಿಲ್ಲ
None
ಪಠ್ಯವನ್ನು ಸಾರಾಂಶಗೊಳಿಸಿ ಫೈಲ್‌ನಿಂದ ಪಠ್ಯವನ್ನು ಸಾರಾಂಶಗೊಳಿಸಿ ವೆಬ್‌ಸೈಟ್‌ನಿಂದ ಪಠ್ಯವನ್ನು ಸಾರಾಂಶಗೊಳಿಸಿ

ಹೆಚ್ಚಿನ ವೈಶಿಷ್ಟ್ಯಗಳೊಂದಿಗೆ ಉತ್ತಮ ಗುಣಮಟ್ಟದ ಔಟ್‌ಪುಟ್‌ಗಳನ್ನು ಪಡೆಯಿರಿ

PRO ಆಗಿ


ಸಂಬಂಧಿತ ಸಾರಾಂಶಗಳು