TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Gumawa ng walang limitasyong mga buod gamit ang AI!
Mag-upgrade sa PRO US$ 7.0/m
Walang pinaghihigpitang function

None

In this paper, the authors introduce Fashion-MNIST, a new dataset designed to provide a more challenging test for machine learning algorithms than the traditional MNIST dataset. The Fashion-MNIST dataset consists of 70,000 images of various categories such as shirts, dresses, coats, hats, scarves, bags, and shoes. Each class has a different texture, color, and style, making it more diverse than MNIST. The authors also introduce several techniques to improve the performance of machine learning models on Fashion-MNIST, including multi-column deep neural networks, emnist (an extension of MNIST to handwritten letters), imagenet (a large-scale hierarchical image database), and regularization techniques using dropconnect. The authors evaluate several machine learning algorithms on Fashion-MNIST, showing that CNNs perform significantly better than SVMs, and that the use of dropconnect regularization improves the performance of both types of models. Overall, this paper provides a valuable resource for researchers working on image classification tasks and demonstrates the potential of using Fashion-MNIST as a more challenging and diverse alternative to MNIST.
Ang mga PRO user ay nakakakuha ng mga buod ng Mas Mataas na Kalidad
Mag-upgrade sa PRO US$ 7.0/m
Walang pinaghihigpitang function
None
Ibuod ang teksto Ibuod ang teksto mula sa file Ibuod ang teksto mula sa website

Makakuha ng mas magandang kalidad na mga output na may mas maraming feature

Maging PRO


Mga kaugnay na buod