TLDRai.com Too Long; Didn't Read AI TLDWai.com Too Long; Didn't Watch AI
Tạo bản tóm tắt không giới hạn với AI!
Nâng cấp lên Pro US$ 7.0/m
Không có chức năng hạn chế

None

In this paper, the authors introduce Fashion-MNIST, a new dataset designed to provide a more challenging test for machine learning algorithms than the traditional MNIST dataset. The Fashion-MNIST dataset consists of 70,000 images of various categories such as shirts, dresses, coats, hats, scarves, bags, and shoes. Each class has a different texture, color, and style, making it more diverse than MNIST. The authors also introduce several techniques to improve the performance of machine learning models on Fashion-MNIST, including multi-column deep neural networks, emnist (an extension of MNIST to handwritten letters), imagenet (a large-scale hierarchical image database), and regularization techniques using dropconnect. The authors evaluate several machine learning algorithms on Fashion-MNIST, showing that CNNs perform significantly better than SVMs, and that the use of dropconnect regularization improves the performance of both types of models. Overall, this paper provides a valuable resource for researchers working on image classification tasks and demonstrates the potential of using Fashion-MNIST as a more challenging and diverse alternative to MNIST.
Người dùng PRO nhận được bản tóm tắt chất lượng cao hơn
Nâng cấp lên Pro US$ 7.0/m
Không có chức năng hạn chế
None
Tóm tắt văn bản Tóm tắt văn bản từ tập tin Tóm tắt văn bản từ trang web

Nhận đầu ra chất lượng tốt hơn với nhiều tính năng hơn

Trở thành CHUYÊN NGHIỆP


Tóm tắt liên quan